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ANNUAL EXTREME LAKE ELEVATIONS BY TOTAL

PROBABILI1Y THEOREM

Harold E. Kubik, P.E.*

ABSTRACT Annual extreme water levels on the Great Lakes, whether maximums or mini-
mums, have a high serial dependence. Therefore, application of traditional frequency analysis
techniques must be interpreted in a different manner and more sophisticated statistical techni-
ques must be applied to account for this dependence.

The terms "Percent Chance Exceedance" and "Return Period" are applied to the expectation
values of annual extieme events that are random in nature and have an equal likelihood of
occurring in any given year. Annual extreme lake elevations on the Great Lakes are not random
from one year to the next; therefore, the usual terms to define the expectation should not be
used to describe the events. An acceptable term is "Percent of Years Exceeded." This is com-
parable to the label "Percent to Time Exceeded" thai e. applied to flow- or elevation-duration
curves.

Decomposition of thc annual extremes into two parts, one containing the highly dependent
part and the other contair ing the random part, is one method of dealing with the dependence
in the lake elevations. Appropriate statistical analyses can be applied to the separate parts and
then the individual results combined to obtain the final frequency relation. This study develops
mean monthly lake elevati(.n duration curves to represent the dependent part and wind setup
frequency curves for the random part. These parts are then combined by application of the total
probability theorem.

Seasonality of the occurrence of both parts was found to be very important. Therefore, the
complete analysis was done for the six-month fall-winter period and the six-month spring-sum-
mer period. The two curves were combined by the union of probabilities.

TDhis technique does not gain any information over a smooth curve drawn through the
observed events when applied to long-record gauges like Cleveland and Buffalo harbor This
technique is most useful in application to short-record stations. The long record of monthly lake
elevations for a particular lake provides the information for the highly dependent part. The
wind setup information for a short-record gauge may be correlated with a nearby long-record
gauge to be made more indicative of a longer record.

Application of this method to the Buffalo harbor and Cleveland gauges resulted in com-
puted "1% of Years Exceeded" elevations of 579.79 feet (176.72 meters) and 574.72 feet (175.17
meters) (IGLD 1955), respectively.

Introduction

I he Great Lakes are an important natural resource that have attracted a variety of human activities -
waterbxrne commerce, water supply, hydroelectric power, recreation, and habitation - to mention
some of the more important ones. The wise management of the lakes and the land adjacent to these
bodies of water requires some anticipation of the likely lake levels. The establishment of non-building
zones, for instance, relies on an estimate of the likely maximum water levels. Planners and designers
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involved in the location of boat harbors and depth of navigation channels need information on the
expected minimum water levels. The computation of these likely levels is complicated by the long-term
fluctuations of the Great Lakes' water levels.

The normal procedure of establishing zones that are subject to flooding, especially in riverine con-
ditions, is to compute a frequency curve based on the available flood data. One of the requirements for
a frequency analysis is that the events are random, independent events. The Great Lakes' water !eve!
data do not meet this requirement. The annual extreme values are highly correlated from year-to-year
because of the strong dependence on the mean level during the year. Therefore, normal frequency
analysis procedures can not be applied to these data. It is possible to ",se statistical analysis techniques
to analyze the extremes by separating each event into two components: one the long-time scale, highly
dependent fluctuation represented by mean lake elevations; and the second the short-time scale, very
indte-,-nde-ni fluctuations g,..y Cae 'y A...I stress on the lake. These components, after in-
dividual analysis, can be recombined to provide an indication of the percent of annual instantaneous
maximum events that will exceed a given elevation. Application of these techniques to the annual
minimums would provide the percent of annual events that do not exceed (nonexceedance) a given
elevation.

Data Available for Analysis
Very long records, by usual hydrologic standards in the U.S., of mean monthly water levels on Lake
Erie have been observed at the Cleveland and Buffalo harbor gauges. The Cleveland record is con-
tinuous since January 1860 (129 years through 1988). And, although some mean monthly valups were
recorded for the 1860-1869 period, the continuous record at Buffalo harbor began in March 1887 (nearly
10'? years through 1988). A continuous record of annual instantaneous extremes are available for the
period 1900-1988 at Buffalo harbor and for period 1904-1988 at Cleveland. Figure 1 is a plot of mean
annual lake elevations at Cleveland. One could conclude from this plot that the 129 years of information
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Figure 1. Mean annual elevations on Lake Erie, Cleveland gauge.
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is really a very short period. The water levels in the 1860's began fairly high and gradually moved
downward until the dramatic decrease in the early 1930s to a low in 1934. After this lowest annual
level, the levels generally increased to the high experienced in 1986. Fitting the mean annual elevations
with a smooth curve makes it appear that only one-half of a cycle has been observed. The high persist-
ence has effectively reduced our knowledge of how often to expect extreme high or low water levels.

Annual Persistence

Computation of the serial correlation coefficient for the annual extremes, a measure of how well one
year is related to ti,e next year, provides a quantitative evaluation of persistence. The lag 1 correlations
for the annual maximum events are 0.752 and 0.406 for Cleveland and Buffalo harbor, respectively.
The strengih of this persistence becomes more clear when it is noted that lags I through 4 (this year is
related to 4 years previous) are found to be significant.

Comparison of a time series plot of the annual instantaneous extremes, Figures 2 and 3, with the
mean annual values illustrate that the extremes have the same pattern as the mean annual values.

As the general lake levels arc a large compenent of the annual extreme, then removal of this com-
ponent could result in values that do meet the frequency requirement of being random and independent.
This separation was accomplished by noting the month of the extreme, and subtracting the mean month-
ly water level at the gauge from the instantaneous extreme. This provided a change in elevation value
that is termed "wind setup." (Note, wind setup is negative for the annual instantaneous minimums.)
Serial correlation computations indicate that the wind setup values are random events; therefore, fre-
quency analysis techniques can be applied to these data. This provides one component of the annual
extreme values.
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Figure 2. Annual instantaneous maximums at Buffalo harbor and Cleveland.
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Figure 3. Annual instantaneous minimums at Buffalo harbor and Cleveland.

A second component is the long-term lake fluctuations. This component is represented by a mean
monthly elevation duration curve. These values are highly correlated, so the frequency label would be
"Percent of Time Exceeded" to imply that they are not independent evern¢f

Seasonality of Extremes
It became apparent as this study progressed that seasonality was important in the analysis of the
extreme events. The Buffalo harbor and Cleveland maximum levels occur at entirely different times of
the year. The Buffalo harbor maximums occur in the fall-winter months, indicating a response to the
winter storms because the monthly lake levels are usually lower during the winter months. At
Cleveland, the maximums occur in the spring-summer months indicating that the seasonal high mean
lake levels are the larger determining factor. This is illustrated in Figure 4 for the maximum and min-
imum values at Buffalo harbor and in Figure 5 for Cleveland. For this study, the data were divided into
two 6-month seasons. The fall-winter season included the months of October, November, December,
January, February, and March. The spring-summer season included the months of April, May, June,
July, August and September

The minimum levels are more influenced by the mean monthly lake levels, although the effect of
wind related minimums can be noted at the Buffalo harbor gauge for March and April (February has
the lowest average monthly elevation at both gauges).
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Total Probability Method
Now that the annual extremes have been decomposed into two components for each of the seasons,
some method must be applied to put the data back together again. This can be done by applying the
total probability theorem. The total probability theorem, as presented in most statistics texts (Benjamin
and Cornell 1970) is:

n

P[A] = P[A I Bi] P[Bi]
i=1

where:

P[A I B] is the conditional probability of the event A given that event B has occurred, and

B is a set of mutually exciusive, collectively exhaustive events of size n.

The conditional probability relations are derived by selecting a given lake elevation and then adding
this value to the wind setup frequency curve. This gives a single conditional frequency curve that has
a certain probability of occurring. Many of these conditional frequency curves can be computed to
completely define the range of water level occurrences. Figure 6 shows seven such conditional frequen-
cy curves. Each curve is labeled with the mean monthly lake elevation used to derive the curve and the
percent of time that this elevation is exceeded. The horizontal axis (Percent of "ears Exceeded) is the
P[A I B portion of the total probability equation. The P[B] portion of the equation is the amount of
probability (percent of time) represented by each curve. This can, simplistically, be the probability
computed by adding one-half of the differences between the two adjacent curves. For example, the
probability associated with the curve based on a monthly elevation of 571.06 (exceeded 50% of the time)
would be f (70%-50%)/2 + (50%-30%)/2 1/100 = 0.20 units of probability. Doing this for all thecurves
will yield a set of values that add up to 1.0. In other words, all the possible mean monthly elevations
have been considered by discrete increments of probability.

The total probability equation is applied at each desired elevation to computean expectationof that
elevation being exceeded. To derive a frequency relation, several elevations would be selected covering
the expected range of values. Figure 7 illustrates in a graphical way what the equation is doing. An
elevation of 574.0 was selected, then the Percent of Years Exceeded for each curve is noted and plotted
on Figure 7 against the Percent of Time (converted to probability by dividing by 100). After all of the
intercepts have been plotted, a smooth curve is drawn through the points. (Note that not aU of the
curves used to develop Figure 7 are shown on Figure 6.) For an elevation of 574.0, the expected lleuit
of Years Exceeded of 4.37% is the probability weighted average, or the area under this curve.

This computational procedure is often called coincident frequency analysis in Corps of Engineeos
publications. As these computations are laborious, a computer program has been written (HEC 1989)
that accepts as input the mean monthly elevation-duration relation and the wind setup frequem y
relation. The program then generates the requisite conditional curves and evaluates the total pnAbiI,
theorem for several elevations to provide an elevation expectation relation,
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Results
The final results were found by combining the computed "frequency curves"' for each of itw A-asons

This is done by the unlion of probabilities. This equation is:

PC =10011 -(0 - I1 1/ 100) (1 - 12/100)1

where: PC the combined frequency value in perrcnt for the selected elevation,

PI the frequency value in percent for season 1 for selected elevation, and

P 2 =the frequency value in percent for season 2 for selected elevation.

Lake elevation expectation curves were computed for Buffalo harbor and Cleveland by, the procedure
described herein. The monthly duration curves were based on the period 1860-1988 while the wind
setup curves were based generally on the 1900-1988 period. Therefore, these curves should be fairly
representative of the 1860-1988 period. The observed instantaneous annual maximums have been as-
signed plotting positions and plotted along with the derived curves on Figures 8 and 9. The "I17% of
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Years Exceeded" elevations computed by this procedure were 579.79 (176.72 meters) and 574.72 feet
(175.17 meters) (IGLD 1955) for Buffalo harbor and Cleveland, respectively.

The utility of this procedure is in the application to gauges that have fairly short records. Mean
monthly elevation duration relations based on a fairly long period are available for each of the Great
Lakes. The wind setup frequency -elation for an individual station may be used, or the relation could
be adjusted by the "two-station comparison" procedures (interagency Committee 1982) recommended
for flood flow frequency computations. Application of these procedures to a station with a fairly short
record should provide elevation expectation curves that are representative of a much longer period
than the period of recorded maximum or minimum instantaneous lake elevations.
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